US009430430B2

a2 United States Patent

Townsend

US 9,430,430 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC SELECTION OF OPERATING
MODES

(71)
(72)

Applicant: Google Inc., Mountain View, CA (US)

Karl Alun Townsend, Los Altos, CA
us)

Inventor:

(73) GOOGLE INC., Mountain View, CA

Us)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 9 days.

@
(22)

Appl. No.: 14/706,297

Filed: May 7, 2015

(65) Prior Publication Data

US 2015/0234762 Al Aug. 20, 2015

Related U.S. Application Data

Continuation of application No. 14/047,959, filed on
Oct. 7, 2013, now Pat. No. 9,053,243.

Provisional application No. 61/789,670, filed on Mar.
15, 2013, provisional application No. 61/712,144,
filed on Oct. 10, 2012.

(63)

(60)

Int. CI.
GOGF 3/00
GOGF 13/12
GOGF 13/38
U.S. CL
CPC ... GOG6F 13/385 (2013.01); GOGF 2213/3812
(2013.01); GO6F 2213/3854 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

M\

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
6,717,573 B1* 4/2004 Shahoian A63F 13/06
345/156

2008/0125107 Al
2012/0236706 Al

5/2008 Zechlin et al.
9/2012 Ambuehl et al.

* cited by examiner

Primary Examiner — Idriss N Alrobaye
(74) Attorney, Agent, or Firm — Morris & Kamlay LLP

(57) ABSTRACT

A dock connects to a user’s host device and provides video
output to a display. The host device is a computing device
that executes one or more applications. One or more con-
trollers are peripheral devices that can be used to control
applications on the host device. A service module provides
support for additional communication profiles that are more
versatile than the communication profiles supported by the
operating system on the host device. The service module
establishes a unidirectional connection between the host
device and the peripheral devices as well as a bidirectional
connection. A control scheme identifying an operating mode
associated with a peripheral device is retrieved from a
server. The peripheral device is configured to send data to
the host device in a format recognizable by one or more
applications based on the operating scheme.

17 Claims, 11 Drawing Sheets

Backend Server 710

Host Device 104

Service
Module 204

Launcher
Application
205

Standard
Games 206

(Game Database|

Operating Mode|
Store 714

E
<—|§—>: i:

)
8

Controller 108

Operating
Modes 702

U.S. Patent

u\

Aug. 30,2016 Sheet 1 of 11 US 9,430,430 B2

Display
106

Dock
102

Host
Device 104

Controller
108A

Controller
108B

Controller
108C

Controller
108D

FIG. 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 11 US 9,430,430 B2

Host Device 104

Operating System 202

Service Module Launcher
204 Application 205
Standard Enhanced
Games 206 Games 208

FIG. 2

US 9,430,430 B2

Sheet 3 of 11

Aug. 30, 2016

U.S. Patent

FIG. 3A

0

~

U.S. Patent Aug. 30, 2016 Sheet 4 of 11 US 9,430,430 B2

o FIG. 3C

FIG. 3D

US 9,430,430 B2

Sheet 5 of 11

Aug. 30, 2016

U.S. Patent

d€

801

Old

02Z¢ s921n8(

97C ouoydosoiy $7C Joyeads QPSS
. 4
I I CWa-0 ,
! Aoy ‘S spnyesliep
29p09) oIpny BNEN VG VR Yo UL e
f 3
). s18661) Sue SIHSLBE
N ‘syonshap Bopeuy UG HeRbeg
I (A L — olEIONg BUIBL e~
1E G e 90¢
CIpRY e, JOYDHUOTOINY e e 9DRI0NG JBSN)
o€
M@ »/ 01¢ 80¢ SR T YT T R N
—e 20¢

U.S. Patent Aug. 30, 2016 Sheet 6 of 11 US 9,430,430 B2

Service Module 204
Connection Controller
Management Registration
Module 402 Module 404
Controller
Registry 406
Input Output
Processing Processing
Module 408 Module 410 \/_\
40 \

Controller Device Controller Connection
Number 452 Identifier 454 Type 456 Status 458
Controller 1 BT GP 4 Gamepad Connected
Controller 2 BT PDL 2 Paddle Not Connected
Controller 3 BT PDL 1 Paddle Connected
Controller 4 BT GP 2 Gamepad Connected

FIG. 4B

US 9,430,430 B2

Sheet 7 of 11

Aug. 30, 2016

U.S. Patent

VS "Old |

_ 0SG ao1nap ¥yoeqpaa, ajetad

-
|
i

.

A

J8||0JJU0D puUE UoNEeo||

8CG 8Inpow 821AI8S BIA

dde paduByus usaMIB(Q 91BJIUNWWOYD)

9z¢ 1ndur Jasn 19818

| 725 uonauuoo [eUOROBIPIUN BINYY |

.

126G Ansibal 0] J8[j0uU0D ppyY

242G puewiwo
a)nw puss

<
-

0ZG UonewIoUl J19||011U0D PUsS

BTG UO199UUCD [BUONIBIIPI] YSIige)sT

A 4

91§ sJ49||05U0D

P8108UU0D JO) YoIess

Y16 a|npowl 3
B2IAIBS B)BANDY

-l
-

Z1G uoneondde

01 uoneandde Jayouneg|
uado 01 Indu sAlRI8Y

Jayoune| uadQ

A

aweb piepue)s 0} Indul puss

B0G SO 03 1Indul pussg

30
70S 1ndur Jasn 19818Q
B Z0G uonosuuod
[euondauiplun ysligeisy
802 dWeo 907 SWE9D 502 0z oInpoyy ¢0¢ WwiaisAg bunessdo 801 J8]j04u0D
pasueyug pJEpUBIS Jayounen 292IAIBS

Q|
LO)

US 9,430,430 B2

Sheet 8 of 11

Aug. 30, 2016

aS 'Old

g7G U0I109UU0D |BUOIIOSJIPIUN 31NA|

VG puewwod ZC PUBLLLLIOD 9)NW PUSS
puss
ZZG Jayoune| al0)say 075G SO 01 1ndul puas

39¢ sweb
pJepuelS aAed| 03 Indul 19918

A

§0G 9|npow 921A19S 0] 1ndul puag

<
-

A

¥9G aweb piepueis 03 indul puss 209G SO 03 1ndul puas

095 1ndul Jasn 10919(
]

8GS
UOI192UUO0D [BUOIDAJIPIUN S)NWIUN

; wmowEmomQO TGG PUBLILOD S)NWUN PUSS
Jepue)s u

2GG aweb piepuels
uado 01 Indul anleday

U.S. Patent

]
802 sweo 902 SWED 502 0 oInpoyy ¢0¢ weisAg Bunesedo 801 48]j03u0D
paoueyul plepuels Jayoune 22IAI0S

(e
Te
O

U.S. Patent

Aug. 30, 2016

PROCESSOR

Sheet 9 of 11

PN

R B
\')

~ INSTRUCTIONS

(2]

? MAIN MEMORY

\

~ INSTRUCTIONS

i STATIC
= MEMORY

(o2}
[op}

~ NETWORK
INTERFACE
DEVICE

|22
N
[e]

2
N
{o}

FIG. 6

US 9,430,

600
/

GRAPHICS
DISPLAY

ALPHA-NUMERIC —

|®)
—
o

» l«—» npUTDEVICE | &12
CURSOR L
, > CONTROL 614
< ™BUS DEVICE
STORAGE UNIT o6
MACHINE-
e <«—>| READABLE [0
MEDIUM o
INSTRUCTIONS [f (534
SIGNAL
«——»| GENERATION [gig
DEVICE T

430 B2

U.S. Patent Aug. 30,2016 Sheet 10 of 11 US 9,430,430 B2

m\

Backend Server 710
Network
708

Host Device 104

Service Launcher
Application Standard
Module 204 205 Games 206

Game Database

Operating Mode
712

Store 714

t1
704 706

v |

Controller 108

Operating
Modes 702

FIG. 7A

US 9,430,430 B2

Sheet 11 of 11

Aug. 30, 2016

a4l 'Old

A
A

077 sindul swen)

697 sweb —
Jepuels uad
PIEPUE} © apow Buielado ayjeAnoy
797 cVO_Hom_ow apow bBunelsado >
||||| |wo_m spow buperdo |
IIIIIIIIIIIIIIIII |'

$97 apow Buneiado sransy

A

<l
-

Y

.
ot

apow Bunelsado 10} 393D

¢9

N~

Y

09Z SWayds |04juoD)

8S7
awayos [0juod dn 3007

<l
-

GZ Ja1juspl sweo

ZGZ sweb piepuels
uado 0y Indul aA1909y
I

U.S. Patent

vz 42 302 oweo 502 FOZoInpon Z0¢ walsAs 307
3.01S SPO asegeleq plepuels Jsyoune AINIDS Bunetado J9Jj0U0D
bunesedo sewen)

Q)
N~

US 9,430,430 B2

1
DYNAMIC SELECTION OF OPERATING
MODES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/712,144, filed Oct. 10, 2012, and U.S.
Provisional Application No. 61/789,670, filed Mar. 15,
2013, which are incorporated by reference in its entirety.

BACKGROUND

1. Field of Art

The disclosure relates to the field of electronic games
operating on a host device, and more particularly to the
communication between a host device and a peripheral
device while a user interacts with an electronic game.

2. Description of the Related Art

Modern smartphones, tablet computers, and other mobile
devices have a rapidly increasing amount of processing
power, graphics capabilities, connectivity options, storage,
and memory. As a result, mobile devices are becoming a
preferable platform for electronic games. However, mobile
devices have many limitations. For example, games on
mobile devices are difficult, and even impractical, to expe-
rience with multiple users participating using the same
screen as an interface. In addition, the touchscreens that are
included in most mobile devices as the primary input device
are poorly suited for interacting with many types of games
and cannot be used to implement complex control schemes.

Some wireless technology standards offer multiple com-
munication profiles that can be used for communication
between devices, such as between a smartphone and a
controller. For example, the Bluetooth® wireless standard
includes profiles such as the Human Input Device Profile
(HID) and the Serial Port Profile (SPP).

Mobile operating systems are generally configured to
support a limited set of communication profiles. In particu-
lar, the operating systems of typical mobile computing
devices, such as smartphones and tablet computers, typically
connect to input devices via a unidirectional profile (e.g.,
HID) that only allows data to be sent from the input device
to the computing device. However, unidirectional profiles
cannot be used to send data back to the input device. This is
particularly disadvantageous when connecting a game con-
troller to the computing device because game controllers
typically include features (e.g., indicator LEDs or motors for
force feedback) that are controlled by signals received from
a host device.

BRIEF DESCRIPTION OF DRAWINGS

The disclosed embodiments have other advantages and
features that will be more readily apparent from the detailed
description, the appended claims, and the accompanying
figures (or drawings). A brief introduction of the figures is
below.

FIG. 1 is a block diagram illustrating a system environ-
ment for dynamically switching between communication
profiles, according to one embodiment.

FIG. 2 is a block diagram illustrating components of the
host system, according to one embodiment.

FIGS. 3A-3B illustrate various views of a gamepad con-
troller, according to one embodiment.

FIGS. 3C-3D illustrate various views of a paddle control-
ler, according to one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3E is a block diagram illustrating components of a
controller, according to one embodiment.

FIG. 4A is a block diagram illustrating components of the
service module, according to one embodiment.

FIG. 4B is illustrates an example of a controller registry,
according to one embodiment.

FIG. 5A is an interaction diagram illustrating an example
process for establishing a connection to a controller with a
bidirectional communication profile, according to one
embodiment.

FIG. 5B is an interaction diagram illustrating an example
process for dynamically switching between communication
profiles, according to one embodiment.

FIG. 6 illustrates one embodiment of components of an
example machine able to read instructions from a machine-
readable medium and execute them in a processor.

FIG. 7A is a block diagram illustrating a system environ-
ment for dynamically switching between controller operat-
ing modes, according to one embodiment.

FIG. 7B is an interaction diagram illustrating a process for
dynamically switching between controller operating modes,
according to one embodiment.

DETAILED DESCRIPTION

The Figures (FIGS.) and the following description relate
to preferred embodiments by way of illustration only. It
should be noted that from the following discussion, alter-
native embodiments of the structures and methods disclosed
herein will be readily recognized as viable alternatives that
may be employed without departing from the principles of
what is claimed.

Reference will now be made in detail to several embodi-
ments, examples of which are illustrated in the accompany-
ing figures. It is noted that wherever practicable similar or
like reference numbers may be used in the figures and may
indicate similar or like functionality. The figures depict
embodiments of the disclosed system (or method) for pur-
poses of illustration only. One skilled in the art will readily
recognize from the following description that alternative
embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples described herein.

Overview of Multi-Platform Gaming System

FIG. 1 is a block diagram illustrating a system environ-
ment 100 for dynamically switching between communica-
tion profiles, according to one embodiment. The system
includes a dock 102, a host device 104, a display 106, and
controllers 108.

The dock 102 connects to a user’s host device 104 and
provides video output to a display 106. The dock 102 can
also provide power to the host device 104 for charging,
convert an audio/video stream from the host device 104 to
an interface suitable for driving the display 106, and provide
a mechanical stand on which to place the host device 104
during gameplay.

In one embodiment, the host device 104 outputs audio/
video data over a microUSB connection in accordance with
the MHL (Mobile High-Definition Link) standard. In this
embodiment, the dock 102 includes an MHL receiver that
converts MHL into HDMI.

In another embodiment, the host device 104 has an HDMI
port, and the dock simply allows an HDMI signal to pass
through and be outputted to the display 106 through the
dock’s HDMI port. In still another embodiment, the dock
102 contains a DisplayPort converter to convert from Dis-

US 9,430,430 B2

3

playPort to HDMI (e.g., for use with a phone or tablet, for
example, and ANDROID platform phone or tablet).

In one embodiment, the dock 102 includes a DC jack that
charges the host device 104 via the microUSB port and
provides power to the MHL receiver. Alternatively, the dock
102 may have a built-in power supply that receives AC
power.

In some embodiments, the dock 102 includes additional
features and performs additional functions that improve the
performance of the launcher application 110 and the games
executing on the host device 104. For example, the dock 102
may include an Ethernet port that connects to a network,
which may be useful in locations where the networking
hardware inside the host device 104 (e.g., a data or wireless
connection) is unreliable.

The dock 102 may also include a Radio Frequency
Identification Tag (RFID tag) that can be read by a Near
Field Communication (NFC) device on the host device 104.
In one embodiment, the RFID tag includes data that causes
the host device 104 to automatically start a launcher appli-
cation. For example, the RFID tag may contain an identifier
for the launcher application (described below) that follows
a naming convention established by the operating system of
the host device 104. In another embodiment, the RFID tag
includes a command that causes the host device 104 to
automatically resume the user’s most-recently played game
(or most-recently used application) using a game state saved
on the user’s controller 108A. In still another embodiment,
the RFID tag includes a command that causes the host
device 104 to access a specified URL in a browser. This may
be useful, for example, if the launcher application or one of
the games is implemented as a server-based program (e.g.,
in HTMLS5).

In another embodiment, the dock 102 includes the RFID
tag but does not include components for relaying a video
signal to the display 106. In these embodiments, the dock
may simply have a cradle or coaster shape that holds the host
device 104 while a separate device is used to convert the
audio/video stream from the host device to an interface
suitable for driving the display 106.

In still another embodiment, the dock 102 is omitted and
the host device 104 sends a video output signal to the display
106 over a communication link (e.g., an HDMI cable).

The host device 104 a computing device that executes one
or more applications. In one embodiment, the host device
104 runs the ANDROID operating system (e.g., a smart-
phone or tablet computer). In another embodiment, the host
device 104 runs the IOS operating system (e.g., an IPHONE,
IPOD TOUCH, or IPAD). In another embodiment, the dock
102 and the host device 104 may be merged into a single
device that executes games and outputs signals to a display
106. In still another embodiment, the display 106 acts as the
host device 104. For example, the display 106 may include
electronic components that are capable of running the
ANDROID operating system. The host device 104 is
described in further detail with reference to FIG. 2.

In one embodiment, a single video signal is rendered on
the host device 104 (e.g., the operating system and the
games), and the signal is output to be mirrored on the display
106. In this embodiment, a display on the host device 104
(e.g., atouchscreen) may display the same signal, or the host
device’s display may simply be turned off. In another
embodiment, the host device 104 renders two different video
signals. One signal is shown on a display in the host device
(e.g., a touchscreen), and the second signal is sent to be
shown on display 106. For example, an implementation of a

30

40

45

55

4

poker game may show the cards in a player’s hands on the
host device’s display and shown the cards on the poker table
on the display 106.

The controllers 108 are peripheral devices that can be
used to control applications and navigate user interfaces on
the host device 104. Although only four controllers 108 are
shown, the system 100 may include additional or fewer
controllers (e.g., 2, 3, 5, 8, etc), and different types of
controllers 108 may be connected at once. In one embodi-
ment, the controllers 108 include the example controllers
108 described with reference to FIGS. 3A-3E. In addition to
controllers 108, the host device 104 may also be connected
to other types of peripheral devices, such as keyboards,
mice, headsets.

In some embodiments, the host device 104 connects to a
backend server (not pictured) over a network (not pictured)
to access a marketplace. The marketplace provides applica-
tions that are designed to work with the controllers 108.

Description of Example Embodiments for Host Device

FIG. 2 is a block diagram illustrating components of the
host device 104, according to one embodiment. The host
device 104 includes an operating system 202, a service
module 204, a launcher application 205, standard games
206, and enhanced games 208. In other embodiments, the
host device 104 includes additional, fewer, or different
components, and the functionality of the components
described herein may be distributed among the components
of the host device 104 in a different manner.

The operating system 202 manages hardware resources of
the host device 104 and provides services for applications
206, 208 executing on the host device 104. As described
above, the operating system 202 may be a mobile operating
system (e.g., the GOOGLE ANDROID operating system or
the APPLE IOS operating system) or a desktop operating
system (e.g., MICROSOFT WINDOWS). The operating
system 202 includes support for one or more communication
profiles but may not include support for a communication
profile suitable for bidirectional communication with the
controllers 108. For example, the GOOGLE ANDROID
operating system includes support for a unidirectional
Human Interface Device (HID) profile over BLUETOOTH
that allows the host device 104 to receive data from a
peripheral device but does not allow the host device 104 to
send data to the peripheral device.

The service module 204 provides support for additional
communication profiles that are more versatile than the
communication profiles supported by the operating system
202. For example, the service module 204 may include
support for a bidirectional communication profile (e.g., the
Serial Port Profile (SPP) over BLUETOOTH) that allows
the host device 104 to send data to a peripheral device and
receive data from the peripheral device. The service module
204 is described in further detail with reference to FIGS.
4A-4B.

The launcher application 205 executes on the host device
104 to provide a ten-foot user interface (e.g., viewable on the
display 106 from ten feet away) that allows a user to launch
the games 206, 208 and browse for new games in the
marketplace.

The games 206, 208 are software modules capable of
being executed on the host device 104. The standard games
206 are games that can be controlled by a controller 108 or
some other peripheral device connected over a unidirec-
tional communication profile. Thus, the standard games 206
do not send data back to a controller 108.

The enhanced games 208 are games that can be controlled
by a controller 108 connected over a bidirectional commu-

US 9,430,430 B2

5

nication profile. Thus, the enhanced game 208 can send data
back to a controller 108. For example, an enhanced game
208 can send a control signal back to a controller 108 (e.g.,
to control force feedback devices on the controller or turn on
indicator LEDs). An enhanced game 208 can also send user
data or game data to be stored on a storage medium within
the controller 108.

In one embodiment, a piece of metadata is added to each
game 206, 208 to indicate whether the corresponding game
206, 208 is a standard game 206 or an enhanced game 208.
In another embodiment, some other method is used to
identify standard games 206 and enhanced games 208. For
example, enhanced games 208 may be placed in a separate
folder, or the service module 204 may maintain a list of
enhanced games 208. As another example, the launcher
application 205 maintains a list of enhanced applications
208. As still another example, a centralized server maintains
a list of enhanced applications 208, and the launcher appli-
cation 205 compares the list to games 206, 208 on the host
device 104 to determine whether each game 206, 208 is a
standard game 206 or an enhanced game 208. The launcher
application 205 can also be configured to display a visual
indicator, such as an icon, next to a graphic for each
application to indicate whether the application is a standard
application 206 or an enhanced game 208.

Games in the marketplace and on the host device 104 may
be filtered based on any of these items of metadata. Some of
the filtering may be automatic. For example, the marketplace
may automatically filter the games displayed to a user based
on the compatible devices and compatible controllers fields
so that the user is only shown games that are compatible
with the user’s host device 104 and connected controller
108. In one embodiment, the launcher application 205
automatically sends an identifier for the host device 104 and
connected controller 108 to the backend server after the host
device 104 connects to the server. The user may also
manually specify a filter. In addition, games may be filtered
based on multiple items of metadata at once. For example,
a filter may be configured to display games that are (1)
classified as shooter games, (2) have an age/content rating of
Teen or Everyone, and (3) are compatible with a slingshot
controller.

In addition to the filtering that is performed based on the
metadata 504, the backend server 402 may also maintain a
whitelist of approved games that can be shown on the
marketplace. In one embodiment, only whitelisted games are
displayed when the launcher application 205 is used to
access the marketplace. Implementing a whitelist of games
in this manner can allow an administrator of the backend
server to block any inappropriate games (e.g., games with
pirated content or games with extreme violence and sexual
content) from being displayed in the marketplace or in the
launcher application 110 on the host device 104.

In addition to the games 206, 208, the host device may
include additional applications that are shown in the
launcher application 205 and can be controlled by a con-
troller 108, either over a unidirectional connection (similar
to a standard game 206) or over a bidirectional connection
(similar to an enhanced game 208). Other applications may
include, for example, a calendar application, a notepad or
text memo application, a streaming video application (e.g.,
NETFLIX), a virtual world application (e.g., SECOND
LIFE), and a map application.

Description of Embodiments for Controller

FIGS. 3A-3B illustrate an example external design for a
controller 108, according to one embodiment. The controller
108 shown in FIGS. 3A-3B is a gamepad controller that

25

40

45

55

6

includes a variety of joysticks, buttons, and controls that are
suitable for many different kinds of gameplay.

FIGS. 3C-3D illustrates an example external design for a
controller 108, according to another embodiment. The con-
troller 108 shown in FIGS. 3C-3D is a paddle controller that
includes a knob and a variety of buttons.

FIG. 3E is a block diagram illustrating components of a
controller 108, according to one embodiment. As illustrated
in FIG. 3E, the controller 108 may store instructions and
data (e.g., in the program storage 302, user storage 304, and
game storage 306) that can be read by the microcontroller
308 and sent to the host device 104 via the radio 310.

The program storage 302 contains machine-readable
instructions that control certain functions of the controller
108. For example, the program storage 302 may include
instructions for automatically turning the controller off after
a predetermined idle period has elapsed, automatically turn-
ing the controller on after detecting motion or a button press,
or interpreting the signals from the sensors 312, buttons 314,
analog joysticks and triggers 316, and NFC device 318. The
program storage 302 may also include one or more
addresses (e.g., a Media Access Control address) for the
most recent host devices 104 that were successfully con-
nected to the controller 108. In some embodiments, the
controller 108 attempts to force a connection to the host
device at the most recent stored address at the beginning of
the connection process.

The user storage 304 contains user data associated with
the user of the controller. For example, the user storage 304
may include profile information for the user, such as contact
information (e.g., email address), achievements, parental
control settings (e.g., to prevent the user from accessing
games with certain age and content ratings), an avatar, and
a username or user identifier. The user storage 304 may also
contain the user’s balance in an online currency that is used
to purchase games in the marketplace 116 or items within
individual games. In some embodiments, the user storage
304 may be backed up to the backend server 114 so that the
data is not lost if the user misplaces or sells the controller
104.

The game storage 306 contains game data associated with
individual games 206, 208. For example, the game storage
306 may include a saved game state representing the posi-
tion and status of the user’s character in the game at the end
of the user’s most recent gaming session. The game storage
306 may also include data describing the user’s progress in
a game, such as items that the user unlocked or earned,
properties (e.g., strength, agility, speed, etc.) of a character
belonging to the user, levels that the user has completed, and
opponents/enemies that the user has defeated.

There are many benefits to storing the user data and game
data on the controller. For example, suppose a user takes his
controller to a friend’s house and connects to a friend’s host
device 104 to play a multiplayer game with the friend. The
user’s avatar and achievements can be loaded from the user
storage 304, and the user’s items, characters, and game
progress can be loaded from the game storage 306. In other
words, the user can simply connect his controller and play
a multiplayer game with his friend using his own character,
items, and other data. In addition, since the data is stored on
the controller 108, the data can also be loaded if the friend’s
host device 104 is not able to connect to the backend server.

The radio 310 establishes a wireless connection to the
host device 104. In one embodiment, the radio 310 can
simultaneously maintain multiple connections (with differ-
ent communication profiles) to the host device 104. For
example, the radio 310 can be a BLUETOOTH radio that

US 9,430,430 B2

7

can simultaneously maintain connections over HID and SPP.
The radio 310 can alternatively be an RF radio or a WiFi
Direct radio.

Instead of sending the state of all buttons at a fixed rate,
the controller 108 can be configured to send communication
packets when there is a state change in the controller 108.
For example, if a button is pressed and held, there will only
be a single packet sent. Once the button is released, one
more packet is sent to indicate that the button has been
released.

A similar procedure can be used for the analog joysticks
and triggers 316. For example, suppose an analog trigger can
output a value between 0 (not pressed down) and 255
(completed pressed down). The controller 108 can be con-
figured to only send changes in the output value of the
trigger. Thus, if the user keeps the trigger completely pressed
down for 5 seconds and then slowly releases the trigger, then
the controller 108 can send a single packet representing
binary 255 (i.e., Ob11111111) at the beginning of the 5
seconds and then send a string of packets representing the
change in the output value as the user slowly depresses the
trigger. For example, if the next sample of the trigger
corresponds to binary 248 then the controller 108 may send
a packet representing -7 (i.e., the change in value between
the previous sample and the current sample). Alternatively,
the controller 108 may send a packet representing binary
248. The controller 108 can be configured to send output
data for an analog joystick in the same manner, but with two
output values instead of one (e.g., an X value and a y value).

The controller 108 may also implement dead zones by
ignoring any analog inputs that fall within a threshold value.
For example, although an analog trigger may be designed to
output a value of 0 when the trigger is not pressed down, the
output of the analog trigger may drift between 0 and a small
positive value (e.g., 5) while not pressed down due to
process variation when manufacturing the analog trigger or
noise in the analog circuit that connects the trigger to a
device that samples the output value of the trigger (e.g., an
analog to digital converter). To prevent this drift from
generating erroneous and undesired game inputs, the con-
troller 108 may be configured to ignore any input values
between 0 and 5 from the analog trigger (e.g., by not sending
a packet per the method described above). This method for
filtering out erroneous inputs may be implemented in hard-
ware or in software (e.g., in the program storage 302) and
can also be applied to other peripheral devices of the
controller, such as the sensors 312, buttons 314, and analog
joysticks. The filtering method may be adapted for use with
the other components. For example, if implemented for an
analog joystick, the filtering may be expanded to two
dimensions and configured to ignore inputs in the middle of
the joystick’s output range (e.g., between threshold values of
120 and 135) because the default output value of the joystick
is 127. In another example, the filtering may also be imple-
mented temporally to ignore any bouncing that may occur
when a button 314 is pressed down.

Another feature of the multi-platform gaming system 100
is the ability for a user account to be associated with a
specific controller 108. This simplifies game play because
the controller 108 is identified by the system 100 and the
user is instantly logged into the system 100 or the game.
High scores, game state, and achievements are all tied to and
stored on the controller. If a user plays games at other
locations, the user can take his controller, pair it with a host
device at the other location, and continue playing with the
user’s character intact and with all of its weapons and
power-ups.

10

20

30

35

40

45

50

55

8

Alternate embodiments of the controller 108 can contain
Near Field Communication 318 (NFC) so that the user can
pair the controller 108 to the host device 104 by simply
bringing the controller 108 near the host device 104. After
establishing the connection, the user’s profile information
can be loaded either from the user information 304 on the
controller 108 or by retrieving the information from the
backend server 114.

In some embodiments, the controller 108 also includes
feedback devices 320 that provide force feedback to the user.
For example, the feedback devices 320 can include one or
more vibration motors that can cause the controller to
vibrate. In embodiments where the controller 108 includes a
knob (e.g., the paddle controller shown in FIGS. 3C-3D), the
feedback devices 320 can further include a device that
changes the torque required to rotate the knob. The feedback
devices 320 can also include other output devices, such as
indicator LEDs (e.g., to indicate a player number that was
assigned to the controller 108) or a display on the controller
108.

The controller 108 can additionally include an audio
codec 322 that supports one or more audio input and audio
output devices. For example, the audio codec 322 can
support a speaker 324 and a microphone 326. The audio
codec 322 can also support other devices for capturing and
generating audio, such as an external microphone jack, a line
in jack, and a headphone jack.

Service Module and Dynamic Switching of Communica-
tion Profiles

FIG. 4A is a block diagram illustrating components of the
service module 204, according to one embodiment. In the
illustrated embodiment, the service module 204 includes a
connection management module 402, a controller registra-
tion module 404, a controller registry 406, an input process-
ing module 408, and an output processing module 410. In
other embodiments, the service module 204 may include
additional, fewer, or different components, and the function-
ality described herein may be distributed among the com-
ponents in a different manner.

In one embodiment, the service module 204 runs in the
background on the host system 104. For example, the
service module 204 runs in the background on a host device
104 that runs a version of the GOOGLE ANDROID oper-
ating system. However, some mobile operating systems,
such as some versions of APPLE IOS, allow a third-party
application to run in the foreground but do not allow
third-party services to run in the background. In embodi-
ments where the host device 104 runs on such an operating
system, the functions of the service module 204 may be
compiled into the launcher application 205 and into each
enhanced game 208. In these embodiments, communication
packets are directly forwarded from the Bluetooth stack to
the foreground application (i.e., the launcher 205 or an
enhanced game 208) instead of to a service module.

The connection management module 402 establishes,
manages, and terminates bidirectional connections between
the host device 104 and controllers 108. The connection
management module 402 establishes a bidirectional connec-
tion with a controller 108 (e.g., a BLUETOOTH connection
over the Serial Port Profile) when the service module 204 is
launched. In another embodiment, the service module 204 is
launched when the host device 104 is booted up, and the
service module 204 establishes a bidirectional connection
with a controller 108 when the service module 204 detects
that the user has provided input to launch an enhanced game
208. After a bidirectional connection has been established
with a controller 108, the connection management module

US 9,430,430 B2

9

402 can also send a command to the controller 108 (e.g., via
the output processing module 410) to mute a unidirectional
connection that was previously established between the
controller 108 and the host device 104. The details and
benefits of muting a unidirectional connection are described
in further detail below with reference to FIG. 5.

The controller registration module 404 registers control-
lers 108 that have been connected via a bidirectional con-
nection by generating new entries in the controller registry
406. An embodiment of the controller registry 406 is shown
FIG. 4B. In this embodiment, the controller registration
module 404 generates a new entry in the controller registry
by assigning a controller number 452 to the controller 108,
associating the controller number 452 with a device identi-
fier 454 for the controller 108, and saving information
identifying the type of controller 456 that was connected. In
one embodiment, the operating system 202 assigns the
device identifier 454 to a controller 108 when a unidirec-
tional connection is established with the controller. After the
entry is generated, the controller registration module 404
stores the entry in the controller registry 406. Each entry in
the controller registry can also include a connection status
458. When the corresponding controller 108 is connected
over a bidirectional connection, the connection status 458
indicates that the controller is connected. Similarly, the
controller registration module 404 changes the connection
status 458 to not connected when the bidirectional connec-
tion is terminated. The controller registration module 404
can also delete the entry in the registry 406 upon receiving
a request from the user to delete the entry.

Referring back to FIG. 4A, the input processing module
408 receives controller input from a connected controller
108 and uses data in the controller registry 406 to generate
game input that can be passed to an enhanced game 208 or
to some other component of the host device 104. In one
embodiment, the controller 108 sends controller input to the
host device 104 in a packet structure in which each packet
includes a header, a payload length, one or more bytes of
data, a battery indicator, and a sequence byte. In this
embodiment, the input processing module 408 receives the
packet and the device identifier of the controller 108 and
uses the controller registry 406 to map the device identifier
to the controller number. After the determining the controller
number, the module 408 passes game input to the enhanced
game 208 currently running in the foreground. The game
input includes the controller number and one or more
messages representing the data bytes. For example, if the
data bytes indicate that the left button on the controller is
pressed, the messages include an indication that the left
button has been pressed. Alternatively, the game input can be
passed to some other component of the host device 104.

In one embodiment, the input processing module 408 uses
the type identifier 456 to interpret the controller input
received from the controller 108 and map the controller
input to game input in a corresponding manner. For
example, if the data bytes received from a paddle controller
may include a discrete value indicating a quantized rota-
tional position of the knob, the input processing module 408
can track changes in the discrete value to determine an
angular velocity of the knob and output the angular velocity
as one of the messages in the game input. Alternatively, the
input processing module 408 can merely transform the
discrete value into a more convenient form. For example, the
input processing module 408 can calculate an angular posi-
tion in degrees based on the discrete value (which may be
quantized into different angular units). The input processing
module 408 can transform data bytes representing other

10

15

20

25

30

35

40

45

50

55

60

65

10

input sensors in a similar manner. For example, if the data
bytes representing the position of an analog joystick give the
position in Cartesian coordinates, the input processing mod-
ule 408 can transform the Cartesian coordinates into polar
coordinates and output the polar coordinates as one of the
messages in the game input.

The input processing module 408 can also operate in a
compatibility mode that maps input from non-conventional
controllers to conventional inputs. For example, if the user
presses the right arrow button on a gamepad controller (e.g.,
the gamepad shown in FIGS. 3A-3B) while playing an
enhanced game 208, the input processing module 408 maps
this button press to a message indicating that the right arrow
button has been pressed. However, if a paddle controller
(e.g., the paddle shown in FIGS. 3C-3D) is connected
instead and the user rotates the knob on the paddle controller
clockwise, the input processing module 408 can be config-
ured to map the clockwise knob rotation to the same
message indicating that the right arrow button has been
pressed. In one embodiment, the game input includes this
compatibility message in addition to a second knob-specific
message indicating the angular position or angular velocity
of the know. If the enhanced game 208 is configured to
receive knob-specific input, then the game 208 uses the
knob-specific message. Otherwise, the game 208 uses the
compatibility message. Thus, this mapping function of the
input processing module 408 can advantageously allow
different types of controllers 108 (with different buttons,
joysticks, and other input hardware) to control the same
enhanced game 208 without any significant modifications to
the way the game 208 handles game input received from the
service module 204.

The input processing module 408 can also pass other
portions of each packet to components of the host device
104. For example, the battery indicator byte and the corre-
sponding controller number can be passed to a battery
management module (not pictured) within the service mod-
ule 204 that monitors the voltage levels of connected con-
trollers and displays low battery warnings when the battery
voltage on a connected controller drops below a threshold
voltage. The input processing module 408 may also check
the sequence byte of a received packet against the sequence
byte of the previous packet to determine whether any
packets were lost.

The output processing module 410 receives game output
(e.g., a request to send data or a command to a controller),
uses data in the controller registry 406 to process the game
output into controller output, and sends the controller output
to the appropriate controller. In one embodiment, game
output includes the output data to be sent and the controller
number for the destination controller. The game output can
be received from an enhanced game 208, a component of the
service module 204 (e.g., the connection management mod-
ule 402), or some other component of the host device 104.
The controller output sent to the controller can be a com-
mand to control one of the hardware devices on the con-
troller 108 (e.g., one of the feedback devices 320). The
controller output can also be program data, user data, or
game data to be stored in the appropriate storage block 302,
304, 306 on the controller. In addition, the controller output
can be an audio signal or data to be used by an NFC device
on the controller.

After receiving game output, the output processing mod-
ule 410 accesses the controller registry to map the controller
number to the channel on which the controller is connected.

US 9,430,430 B2

11

The output processing module 410 packetizes the output
data and sends the output data over the channel to the
controller.

FIG. 5A is an interaction diagram illustrating an example
process 500 for establishing a connection between a con-
troller 108 and a host device 104 over a bidirectional
communication profile. The process 500 begins when the
controller 108 establishes 502 a first connection using a
unidirectional communication profile with the operating
system 202. As described above, typical mobile operating
systems 202 (e.g., the ANDROID operating system) provide
support for unidirectional connection profiles (e.g., the
Human Interface Device profile).

After the first connection is established 502 between the
controller 108 and the operating system 202, the controller
108 can detect 504 user input on the various buttons,
joysticks, triggers, and sensors on the controller 108. The
user input is sent 506 to the operating system 202 over the
unidirectional connection and can be used to interact with
the operating system itself (e.g., navigating a user interface
of the operating system). Alternatively, the operating system
202 can send 508 the user input to a standard game 206
executing in the foreground so that the user interacts with the
standard game 206 using the controller 108.

The operating system 202 opens 512 launcher application
208 after receiving 510 an input to do so. The input to open
the launcher application 202 may be received 510 from the
controller 108 (e.g., the user uses the controller to navigate
to and select the launcher application 510). Alternatively, the
input to open the launcher application 202 may be received
510 from a different input device, such as a touchscreen built
into the host device 104 or a different peripheral connected
to the host device 104. After the launcher application 205 is
opened 512, the launcher application activates 514 the
service module 204. In another embodiment, the operating
system 202 opens both the service module 204 and the
launcher application 205 after receiving 510 the launching
input. In still another embodiment, the functions of the
service module 204 are compiled into the launcher applica-
tion 205 and each enhanced game 208. As described above,
this may be advantageous in embodiments when the host
device 104 runs an operating system 202 that does not allow
third-party services to execute in the background (e.g., IOS).

The service module 204 searches 516 for connected
controllers and establishes 518 a connection with the con-
troller 108 using a bidirectional communication profile. In
one embodiment, the connection is a BLUETOOTH con-
nection using the Serial Port Profile (SPP). After the con-
nection is established 518, the controller 108 sends 520
controller information to the service module 204. The con-
troller information may include, for example, a type iden-
tifier for the controller 108 (e.g., whether the controller 108
is a gamepad controller, a paddle controller, or some other
type of controller), a version of the firmware installed on the
controller 108, and a list of sensors, buttons, joysticks/
triggers, feedback devices, and other input/output devices on
the controller 108. In one embodiment, the service module
is activated 514 when the host device 104 is booted up, and
the service module 204 performs the steps 516 thorough 521
before the launcher application is opened 512.

The service module 204 uses the received controller
information to add 521 the newly-connected controller 108
to the controller registry 406. As described above, the
service module 204 can also assign a controller number to
the controller 108 and associate the controller number with
the device identifier assigned to the controller 108. The
module 204 can then create a registry entry that includes the

10

15

20

25

30

35

40

45

50

55

60

65

12

controller number, device identifier, and controller type and
add 521 the new entry to the controller registry 406.

When the launcher 205 or an enhanced game 208 is
launched, the service module 204 sends 522 a mute com-
mand to the controller 108, and the command causes the
controller 108 to mute 524 the unidirectional connection that
was previously established. Muting 524 the unidirectional
connection prevents the controller from sending two copies
of a user input to the host device 104 (e.g., one over the
unidirectional connection and one over the bidirectional
connection).

Thus, after the controller 108 receives 526 input from the
user (e.g., when the user presses a button, manipulates a
joystick, or moves the controller in a manner detectable by
the sensors), the controller 108 sends controller input to the
host device 104 over the bidirectional connection but not
over the unidirectional connection. After receiving the con-
troller input, the input processing module 408 of the service
module 204 uses the controller registry 406 to generate
game input based on the controller input and passes the
game input to the launcher application 205. The user can use
the launcher 205 to launch an enhanced game and use the
controller 108 to interact with the enhanced game 208 in the
same manner.

As described above, the game input generated by the input
processing module 408 includes a controller number for the
controller 108 that sent the corresponding controller input.
This allows an enhanced game 208 to differentiate between
inputs from different controllers, which advantageously
allows for a multiplayer game to played on a single host
device 104.

The launcher 205 or enhanced game 208 can also pass
data back to the controller 108 by sending the data to the
service module 204. For example, the enhanced game 208
can send a signal to the controller 108 to operate 530 one of
the feedback devices 320. In addition, the enhanced game
208 can send audio to be played back by the speaker 324 or
data for the NFC device 318. The enhanced game 208 can
also send user data or game data to the controller to be saved
on the user storage 304 or game storage 306. As described
above with reference to the service module 204, the output
processing module 410 receives game output from the
enhanced game 208 and sends controller output to the
controller 108.

FIG. 5B is an interaction diagram illustrating an example
process 550 for dynamically switching between a bidirec-
tional communication profile and a unidirectional commu-
nication profile, according to one embodiment.

At some point after the process 500 of FIG. 5A establishes
a bidirectional connection and mutes the unidirectional
connection, the launcher 205 receives 552 an input to open
a standard game 206. For example, the user uses the con-
troller 108 to navigate through a user interface of the
launcher application 205 to select and launch a standard
game 206. The launcher 205 opens 554 the standard game
206.

After the launcher 205 receives 552 an input to open a
standard game 206, the service module 204 sends 556 an
unmute command to the controller 108 that causes the
controller to unmute 558 the unidirectional connection. As a
result, any subsequent user inputs detected by the controller
108 are sent to the host device twice—once over the
unidirectional connection and once over the bidirectional
connection.

When the controller 108 detects 560 a user input after
unmuting 558 the unidirectional connection, the controller
108 sends 562 the input to the operating system 202 over the

US 9,430,430 B2

13

unidirectional connection, and the operating system 202
sends 568 the input to the standard game 206. The controller
108 also sends 570 the same input to the service module 204,
but the standard game 208 is not capable of receiving the
resulting game input from the service module 204, so
sending 570 the input to the service module 204 does not
affect the standard game 208. Although the process 560
through 566 of sending the user input to the standard game
206 is only shown once in FIG. 5B, this process 560 through
566 can be repeated multiple times as the user interacts with
the game 206 using the controller 108.

When the controller 108 detects 568 an input to leave the
standard game 206, the input is sent 570 to the operating
system in the same manner as the previous inputs. After
receiving the input, the operating system 202 restores the
launcher 572 as the foreground application.

After being restored, the launcher 205 application sends
574 a command to the service module 204 that causes the
service module 204 to send 576 another mute command to
the controller 108. As a result, the controller 108 mutes 578
the unidirectional connection, and subsequent inputs
detected by the controller 108 are sent over the bidirectional
connection but not over the unidirectional connection. The
controller 108 can once again engage in bidirectional com-
munication via the service module 204 with the launcher
205 or an enhanced game 208.

This process 550 of switching between a bidirectional
communication profile and a unidirectional communication
profile for the connection between the controller 108 and the
host device 104 is advantageous because it allows the
controller 108 to be compatible with standard games 206
that are not configured to interact with the controller 108 via
a bidirectional connection and the service module 204. In
addition, since the service module 204 manages the switch-
ing in the background, the switching process 550 is trans-
parent to the user as the user opens and closes standard
games 206 using the launcher application 206.

Computing Machine Architecture

Referring now to FIG. 6, a block diagram illustrates
components of an example machine able to read instructions
from a machine-readable medium and execute them in a
processor (or controller). The example machine illustrated in
FIG. 6 may be used, for example, may include one or more
components that make up a configuration of the host device
104 or the controller 108 in the system illustrated in FIG. 1.
Specifically, FIG. 6 shows a diagrammatic representation of
a machine in the example form of a computer system 600
within which instructions 624 (e.g., software) for causing
the machine to perform any one or more of the methodolo-
gies discussed herein may be executed (e.g., those described
with reference to FIGS. 2, 4A, 4B, 5A and 5B). In alternative
embodiments, the machine operates as a standalone device
or may be connected (e.g., networked) to other machines. In
a networked deployment, the machine may operate in the
capacity of a server machine or a client machine in a
server-client network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a set-top box (STB),
a personal digital assistant (PDA), a cellular telephone, a
smartphone, a web appliance, a network router, switch or
bridge, or any machine capable of executing instructions
624 (sequential or otherwise) that specify actions to be taken
by that machine. Further, while only a single machine is
illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly

20

25

40

45

14

execute instructions 124 to perform any one or more of the
methodologies discussed herein.

The example computer system 600 includes a processor
602 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU), a digital signal processor (DSP), one
or more application specific integrated circuits (ASICs), one
or more radio-frequency integrated circuits (RFICs), or any
combination of these), a main memory 604, and a static
memory 606, which are configured to communicate with
each other via a bus 608. The computer system 600 may
further include graphics display unit 610 (e.g., a plasma
display panel (PDP), a liquid crystal display (LCD), a
projector, or a cathode ray tube (CRT)). The computer
system 600 may also include alphanumeric input device 612
(e.g., akeyboard), a cursor control device 614 (e.g., a mouse,
a trackball, a joystick, a motion sensor, or other pointing
instrument), a storage unit 616, a signal generation device
618 (e.g., a speaker), and a network interface device 620,
which also are configured to communicate via the bus 608.

The storage unit 616 includes a machine-readable
medium 622 on which is stored instructions 624 (e.g.,
software) embodying any one or more of the methodologies
or functions described herein. The instructions 624 (e.g.,
software) may also reside, completely or at least partially,
within the main memory 604 or within the processor 602
(e.g., within a processor’s cache memory) during execution
thereof by the computer system 600, the main memory 604
and the processor 602 also constituting machine-readable
media. The instructions 624 (e.g., software) may be trans-
mitted or received over a network 626 via the network
interface device 620.

While machine-readable medium 622 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store instructions (e.g., instructions 624). The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing instructions (e.g.,
instructions 624) for execution by the machine and that
cause the machine to perform any one or more of the
methodologies disclosed herein. The term “machine-read-
able medium” includes, but not be limited to, data reposi-
tories in the form of solid-state memories, optical media, and
magnetic media.

Dynamic Selection of Controller Operating Mode

Most conventional controllers that can be connected to a
host device 104 over a unidirectional communication profile
(e.g., the BLUETOOTH HID profile) have a preconfigured
key mapping that maps each button on the controller to a key
code. The controller thus outputs the mapped key code when
the corresponding button is pressed. For example, the up,
left, down, and right directional buttons on a conventional
controller may be mapped to the W, A, S, and D key codes,
respectively. This type of preconfigured mapping between
controller buttons and key codes on a conventional control-
ler allows the conventional controller to be recognized as a
gamepad by the host device’s operating system 202. Stan-
dard games 206 can then be configured with a control
scheme that generates in-game commands that are consistent
with the key mapping of the conventional controller. For
example, the control scheme of a standard game 206 may
issue commands to move an on-screen character up, left,
down, and right when the W, A, S, and D key codes,
respectively, are received. This control scheme would allow
the standard game 206 to be controlled by the conventional
controller of the previous example.

US 9,430,430 B2

15

One drawback to this approach is that the preconfigured
key mappings may not be consistent between different
conventional controllers. For example, a first type of con-
ventional controller may map directional buttons to the W,
A, S, and D key codes as described above, while a second
type of conventional controller may map directional buttons
to the I, J, K, and L key codes or the arrow key codes. As
a result, a standard game that is configured with a particular
control scheme (i.e., to be compatible with the first type of
controller) may not be compatible with the second type of
controller.

In some embodiments, the controller 108 described above
with reference to FIGS. 1 and 3A-3E is capable of dynami-
cally switching between different operating modes, with
each operating mode causing the controller to generate
outputs with a different key mapping. In these embodiments,
when the launcher application 205 is used to launch a
standard game 206, the launcher 205 also dynamically
configures the controller 108 to use an operating mode that
is compatible with the control scheme of the standard game
206. This allows the controller 108 to emulate the output of
several different types of conventional controllers, which
advantageously makes the controller 108 compatible with a
broader range of standard games.

In addition to defining a key mapping, an operating mode
can additionally or alternatively configure a controller 108 to
emulate other behavior. For example, an operating mode can
also configure a joystick of the controller 108 to generate the
same output as a mouse or other pointing device connected
over the BLUETOOTH HID protocol.

FIGS. 7A and 7B illustrate a system environment 700 and
a process 750, respectively, for dynamically switching the
controller to an appropriate operating mode for a standard
game 206, according to one embodiment. For ease of
description, the process 750 shown in FIG. 7B will be
described in conjunction with the components shown in
FIG. 7A.

The process 750 begins when the launcher 205 receives
752 an input to launch a standard game 752. As described
above, the input may be received from the controller 108,
from a touchscreen or other integrated input device of the
host device 104, or from some other input device connected
to the host device 104.

After receiving 752 the input, the launcher 205 sends 756
an identifier for the standard game 206 to the Game Data-
base 710. The games database 712 is a database that stores
metadata for games compatible with the launcher applica-
tion 205 locally on the host device 104. During installation
of'a game the games database 712 retrieves metadata for the
game from the back end server 710. One of the items of
metadata stored for each game is the control scheme of the
game. The launcher application 205 accesses the games
database 712 to look up 758 the control scheme of the
standard game 206 that was launched. The control scheme
760 identifies a compatible operating mode for the controller
108.

The launcher 205 checks 762 the controller 108 to deter-
mine whether the identified operating mode is already stored
on the controller 108. In general, operating modes 702 can
be stored in the program storage 302 of the controller 108.
In one embodiment, the launcher 205 sends an identifier for
the operating mode over the bidirectional connection 704 via
the service module 204, and the controller 108 sends a
Boolean value back to the launcher over the bidirectional
connection 704 indicating whether the identified operating
mode is stored on the controller 108.

25

30

40

45

55

16

If the operating mode is not already stored on the con-
troller 108, the launcher 205 retrieves 764 the operating
mode from the operating mode store 714 on the host device
104. The operating mode store 714 includes operating
modes for the games whose metadata is in the game database
712. During installation of a game the operating mode store
714 retrieves operating modes for a game from the back end
server 714. The operating mode store 714 may even check
the back end server 710 for updates regarding operating
modes at regular time intervals. After retrieving the operat-
ing mode 764, the launcher 205 sends 766 the operating
mode to the controller 108 over the bidirectional connection
704 via the service module 204, and the controller 108 saves
the operating mode in the program storage 302.

In one embodiment, the launcher 205 also maintains a
cache of recently-retrieved operating modes 764. In this
embodiment, if it is determined that the operating mode is
not already stored on the controller 108, the launcher 205
checks the operating mode cache for the operating mode
before retrieving the operating mode from the backend
server 710. This may be advantageous, for example, if the
same operating mode is being saved onto multiple control-
lers 108. The cache may also include the entries in the game
database 712 corresponding to the standard games 206 that
are stored on the host device 104. In this case, the launcher
also accesses the cache before sending 756 the game iden-
tifier to the backend server 710 to look up 758 the control
scheme of the game.

After the operating mode is saved on the controller 108,
or after determining that the operating mode is already
stored on the controller 108, the launcher 205 sends 767 a
selecting command to the controller 108 to select the oper-
ating mode. The launcher 205 also opens 769 the standard
game 206 that was launched. The selecting command causes
the controller 108 to activate 768 the operating mode, and
the controller 108 begins sending game inputs 770 over the
unidirectional connection 706 to the game. Since the
launcher 205 is able to determine and select the appropriate
operating mode for the standard game, the game inputs 770
sent after the operating mode is activated 769 are compatible
with the control scheme of the standard game 206.

Although the process 750 of FIG. 7B was described with
respect to games, the process 750 can also be used to
improve interactivity with other types of standard applica-
tions that are capable of receiving input over the unidirec-
tional protocol. For example, when the user performs an
action in the launcher that causes an Application Store
application to open on the host device (e.g., the GOOGLE
PLAY STORE or the AMAZON APPSTORE), the process
750 can be used to switch the controller 108 to a mode of
operation in which one of the joysticks generates the same
output as an external pointing device, as described above.
Since Application Store applications are typically config-
ured to be controllable by an external pointing device, this
allows the user to navigate the Application Store application
using the controller. This is especially advantageous if the
host device 104 is positioned so that interacting with the
Application Store in the traditional manner (e.g., using the
touchscreen of the host device 104) is undesirable to the
user. For example, the host device 104 may be placed next
to the display 106 (and connected to the display 106) while
the user is sitting on a couch, which would normally require
the user to get up and walk to the host device 104 to interact
with the touchscreen.

Additional Configuration Considerations

In addition to the process 550 of dynamically switching
between communication profiles, the system described

US 9,430,430 B2

17

above can also be configured to simultaneously use the
unidirectional connection and the bidirectional connection
to interact with a peripheral device (e.g., as described in the
process 750 of FIG. 7B). In this configuration, the peripheral
device operates in an enhanced mode in which the peripheral
device sends data to the host device over the unidirectional
connection and receives data from the host device over the
bidirectional connection. For example, the controller 108
sends detected user inputs to the host device 104 over the
unidirectional connection and the operating system 202
sends the inputs to a standard game 206. Meanwhile, the
service module 204 is configured so that the standard game
206 or the operating system 202 recognizes it as an audio
output device and sends audio output to the service 204. The
service module 204 sends the audio output to the controller
108 over the bidirectional connection and the controller 108
plays back the audio with the speaker 324 or a headset
plugged into an audio output jack on the controller.

Although the description presented above was described
with reference to game controllers 108 and game applica-
tions 206, 208, the process 500 of establishing connections
with unidirectional and bidirectional communication pro-
files and the process 550 of dynamically switching between
the communication profiles can be applied to any combina-
tion of peripheral devices and applications. Thus, different
peripheral devices (e.g., keyboards, mice, trackpads, head-
sets, etc.) may be used in place of the controllers 108, and
the peripheral devices may be used to control non-game
applications via the unidirectional and bidirectional connec-
tions. For example, a mouse with a built-in vibration motor
may be used to control a maps application via a bidirectional
connection. In this example, the maps application can be
configured to send feedback to the mouse (e.g., by causing
the mouse to vibrate when the user attempts to increase the
zoom level past a maximum zoom level). As another
example, a multimedia application (e.g., NETFLIX) can be
configured to send one or more audio channels to a remote
control with an audio output jack, thus allowing a user to
listen to the audio track of a video using a headset connected
to the remote control. Similarly, the switching process 550
may be used to transition from the maps application of the
previous example to a notepad application that merely
receives text input from a connected keyboard and does not
send any data back to the keyboard.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A hardware module is
tangible unit capable of performing certain operations and
may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
a standalone, client or server computer system) or one or

30

40

45

55

18

more hardware modules of a computer system (e.g., a
processor or a group of processors) may be configured by
software (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that is permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA)
or an application-specific integrated circuit (ASIC)) to per-
form certain operations. A hardware module may also com-
prise programmable logic or circuitry (e.g., as encompassed
within a general-purpose processor or other programmable
processor) that is temporarily configured by software to
perform certain operations. It will be appreciated that the
decision to implement a hardware module mechanically, in
dedicated and permanently configured circuitry, or in tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as “software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., application program interfaces (APIs).)

The performance of certain of the operations may be
distributed among the one or more processors, not only
residing within a single machine, but deployed across a
number of machines. In some example embodiments, the
one or more processors or processor-implemented modules
may be located in a single geographic location (e.g., within
a home environment, an office environment, or a server
farm). In other example embodiments, the one or more
processors or processor-implemented modules may be dis-
tributed across a number of geographic locations.

Some portions of this specification are presented in terms
of algorithms or symbolic representations of operations on
data stored as bits or binary digital signals within a machine
memory (e.g., a computer memory). These algorithms or
symbolic representations are examples of techniques used
by those of ordinary skill in the data processing arts to
convey the substance of their work to others skilled in the
art. As used herein, an “algorithm™ is a self-consistent
sequence of operations or similar processing leading to a
desired result. In this context, algorithms and operations
involve physical manipulation of physical quantities. Typi-
cally, but not necessarily, such quantities may take the form
of electrical, magnetic, or optical signals capable of being
stored, accessed, transferred, combined, compared, or oth-
erwise manipulated by a machine. It is convenient at times,
principally for reasons of common usage, to refer to such

signals using words such as “data,” “content,” “bits,” “val-
ues,” “elements,” “symbols,” “characters,” “terms,” “num-
bers,” “numerals,” or the like. These words, however, are

US 9,430,430 B2

19

merely convenient labels and are to be associated with
appropriate physical quantities.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a
computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or a combination thereof), registers, or
other machine components that receive, store, transmit, or
display information.

As used herein any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expres-
sion “coupled” and “connected” along with their derivatives.
For example, some embodiments may be described using
the term “coupled” to indicate that two or more elements are
in direct physical or electrical contact. The term “coupled,”
however, may also mean that two or more elements are not
in direct contact with each other, but yet still co-operate or
interact with each other. The embodiments are not limited in
this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present).

In addition, use of the “a” or “an” are employed to
describe elements and components of the embodiments
herein. This is done merely for convenience and to give a
general sense of the invention. This description should be
read to include one or at least one and the singular also
includes the plural unless it is obvious that it is meant
otherwise.

What is claimed is:

1. A method of communication between a peripheral
device and a host device, the method comprising:

establishing a unidirectional connection from the periph-

eral device to the host device;

sending, to the peripheral device over a bidirectional

connection between the peripheral device and the host
device, a command to cause the peripheral device to
cease transmitting data over the unidirectional connec-
tion; and

subsequently sending, to the peripheral device over the

bidirectional connection, a command to cause the
peripheral device to transmit data over both the unidi-
rectional connection and the bidirectional connection
such that the data is transmitted twice.

2. The method of claim 1, further comprising sending, to
the peripheral device over the bidirectional connection, a
command to cause the peripheral device to resume trans-
mitting data over the unidirectional connection.

2 <

2 <

10

15

20

25

30

35

40

45

50

55

60

65

20

3. The method of claim 2, wherein the command to cause
the peripheral device to resume transmitting data over the
unidirectional connection is in response to a decision to
interact with a video game configured to receive data from
the peripheral device, but not configured to send data to the
peripheral device.

4. The method of claim 1, wherein the unidirectional
connection complies with the Bluetooth® Human Interface
Device profile.

5. The method of claim 1, further comprising receiving,
over the bidirectional connection, a signal to an input
processing module of a service module of the host.

6. The method of claim 5, further comprising generating,
in response to receipt of the signal, an input for a video
game.

7. The method of claim 6, further comprising transmitting
the input for the video game to a launcher application.

8. The method of claim 7, further comprising launching
the video game, the video game configured to send data to
the peripheral device.

9. The method of claim 6, wherein the input for the video
game includes an identification of the peripheral device.

10. A computer program product stored on a non-transi-
tory computer-readable storage medium of a host device and
comprising computer-readable instructions for execution by
a processor of the host device, the instructions, when
executed by the processor, configured to cause the host
device to:

establish a unidirectional connection from a peripheral

device to the host device;

send, to the peripheral device over a bidirectional con-

nection between the peripheral device and the host
device, a command to cause the peripheral device to
cease transmitting data over the unidirectional connec-
tion; and

send, to the peripheral device over the bidirectional con-

nection, a command to cause the peripheral device to
resume transmitting data over the unidirectional con-
nection in response to a decision to interact with a video
game configured to receive data from the peripheral
device, but not configured to send data to the peripheral
device.

11. The computer program product of claim 10, wherein
the unidirectional connection complies with the Bluetooth®
Human Interface Device profile.

12. The computer program product of claim 10, wherein
the instructions, when executed by the processor, are further
configured to cause the host device to receive, over the
bidirectional connection, a signal to an input processing
module of a service module of the host.

13. The computer program product of claim 12, wherein
the instructions, when executed by the processor, are further
configured to cause the host device to generate, in response
to receipt of the signal, an input for a video game.

14. The computer program product of claim 13, wherein
the input for the video game includes an identification of the
peripheral device.

15. The computer program product of claim 13, wherein
the instructions, when executed by the processor, are further
configured to cause the host device to transmit the input for
the video game to a launcher application.

16. The computer program product of claim 15, wherein
the instructions, when executed by the processor, are further
configured to cause the host device to launch the video
game, the video game configured to send data to the periph-
eral device.

US 9,430,430 B2

21

17. A host device, comprising:

a network interface device configured to be communica-
tively connected to a peripheral device via a network;

a memory configured to store an operating system and a
service module;

a processor configured to control the host device to cause,
via the operating system, the host device to establish a
unidirectional connection from the peripheral device to
the host device, and to cause, via the service module,
the host device to send, to the peripheral device over a
bidirectional connection between the peripheral device
and the host device, a command to cause the peripheral
device to cease transmitting data over the unidirectional
connection, and to cause the host device to send, to the
peripheral device over the bidirectional connection, a
command to cause the peripheral device to resume
transmitting data over the unidirectional connection in
response to a decision to interact with a video game
configured to receive data from the peripheral device,
but not configured to send data to the peripheral device;
and

a bus coupled to the network interface device, the
memory, and the processor and configured to facilitate
communications among the network interface device,
the memory, and the processor.

#* #* #* #* #*

10

15

20

25

22

